relatively independent of pressure, and hence of ϵ_j , the spin quantum number S in eq. (3) is assumed constant. Furthermore, since |S|=0 at $T\geqslant T_C$, it follows that for any temperature $T\geqslant T_C$

$$\frac{\Delta \theta}{\theta_0} = -P_1^{-1} P - \frac{1}{2} P_2^{-2} P^2$$
 (6)

where $\Delta\theta$ = $(\theta$ - θ _O) and θ _O is the value of θ at P = 0. If the influence of thermal expansion is neglected, the parameters are P₁ = $\sum_j A_j$ and P₂ = $\sum_j \lambda_j^2 A_j^2$, which contain $\lambda_j \equiv \gamma_{uv}^j/\theta_{uv}^j$, $A_j \equiv \sum_l \beta_{uv}^j K_{ji}$, $B_j \equiv \sum_l \beta_u^j K_j i \sum_k \alpha_k c_{ki}$. The remarkable susceptibility above T_C in Fe₂P indicates that

$$\theta = T_c (1 + a + p^{-1}P + \cdots) \text{ or } \Delta\theta \approx (1 + a) \Delta T_c + T_c p^{-1}P$$
 (7)

So long as $\rm \lambda \, \frac{2}{j} \Delta \theta / \theta_{\, 0} <\!\!< 1$ remains valid, substitution of eq. (7) into eq. (6) gives

$$P = -Q_1 \Delta T_c - Q_1^2 Q_2 (\Delta T_c)^2$$
 (8)

where $Q_1 \equiv (1+a) \ [(\theta_0/P_1) + (T_c/p)]^{-1}$ and $Q_2 \equiv (\theta_0/2P_2^2) \ [(\theta_0/P_1) + (T_c/p)]^{-1}$. Comparison of eq. (8) with eqs. (1) and (2) shows that eq. (4) has the correct form and that $Q_1Q_2 \sim 3 \times 10^{-3} \ [K]^{-1} \sim \theta_0^{-1}$. Therefore $(P_1/P_2) \sim 1$, or $\lambda_1 \sim 1$. If all the constants but θ_0 and T_c in Q_1Q_2 are the same for Fe₂P and Fe₂P_{0.9}As_{0.1}, the ratio of the respective θ_0 are 252 x 1.7/710 x 1.2 \approx 1/2. The measured Curie temperatures at 1 atm are $T_c = 221 K$ and 341K, respectively, which demonstrates the essential self-consistency of the analysis. In fact, the small discrepancy can be qualitatively accounted for by the observation that the pressure sensitivity of T_c , and hence p, is larger in Fe₂P.

REFERENCES

- J. B. Goodenough, <u>Progress in Solid State Chemistry</u>, Vol. 5, H. Reiss, ed. (Pergamon Press, 1972) Chap. IV; <u>Proceedings of the Winter School in Solid State Chemistry</u>, C. N. R. Rao, ed. (Plenum Press, New York) in press.
- 2. A. Catalano, R. J. Arnott, and A. Wold, J. Solid State Chem. (in press).
- 3. A. Roger, Thesis, Univ. of Paris, Orsay (1970).
- 4. N. Menyuk, J. A. Kafalas, K. Dwight, and J. B. Goodenough, Phys. Rev. 177, 942 (1969).
- 5. F. K. Lotgering, Proc. Int. Conf. Magnetism, Nottingham 1964, (Inst. Phys. and Phys. Soc., London) p. 533.
- 6. J. B. Goodenough, J. Solid State Chem. 3, 26 (1971) and its references.
- 7. Unlike $\text{CoS}_{2-x}\text{Se}_x$, crystal-field effects influence the magnetic interactions in Fe₂P and may introduce some antiferromagnetic near-neighbor interactions.